Elementary Subgroups of Isotropic Reductive Groups

نویسنده

  • V. PETROV
چکیده

Let G be a not necessarily split reductive group scheme over a commutative ring R with 1. Given a parabolic subgroup P of G, the elementary group EP (R) is defined to be the subgroup of G(R) generated by UP (R) and UP−(R), where UP and UP− are the unipotent radicals of P and its opposite P −, respectively. It is proved that if G contains a Zariski locally split torus of rank 2, then the group EP (R) = E(R) does not depend on P , and, in particular, is normal in G(R).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of finite simple groups whose Sylow 3-subgroups are of order 9

In this paper, without using the classification of finite simple groups, we determine the structure of  finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.

متن کامل

A Simple Classification of Finite Groups of Order p2q2

‎Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, ‎respectively‎. ‎In this paper‎, ‎we show that up to isomorphism‎, ‎there are four groups of order p^2q^2 when Q and P are cyclic‎, ‎three groups when Q is a cyclic and P is an elementary ablian group‎, ‎p^2+3p/2+7 groups when Q is an elementary ablian group an...

متن کامل

Smarandache algebras and their subgroups

In this paper we define S algebras and show that every finite group can be found in some S algebra.  We define and study the S degree of a finite group and determine the S degree of several classes of finite groups such as cyclic groups, elementary abelian $p$-groups, and dihedral groups $D_p$.

متن کامل

Large scale geometry, compactifications and the integral Novikov conjectures for arithmetic groups

The original Novikov conjecture concerns the (oriented) homotopy invariance of higher signatures of manifolds and is equivalent to the rational injectivity of the assembly map in surgery theory. The integral injectivity of the assembly map is important for other purposes and is called the integral Novikov conjecture. There are also assembly maps in other theories and hence related Novikov and i...

متن کامل

Symmetric subgroups of rational groups of hermitian type

A rational group of hermitian type is a Q-simple algebraic group G such that the symmetric space D of maximal compact subgroups of the real Lie group G(R) is a hermitian symmetric space of the non-compact type. There are two major classes of subgroups of G of importance to the geometry of D and to arithmetic quotients XΓ = Γ\D of D: parabolic subgroups and reductive subgroups. The former are co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009